I have a Ph.D. in a field of mathematics in which complex numbers are fundamental, but I have a real philosophical problem with complex numbers. In particular, they arose historically as a tool for solving polynomial equations. Is this the shadow of something natural that we just couldn't see, or just a convenience?
As the "evidence" piles up, in further mathematics, physics, and the interactions of the two, I still never got to the point at the core where I thought complex numbers were a certain fundamental concept, or just a convenient tool for expressing and calculating a variety of things. It's more than just a coincidence, for sure, but the philosophical part of my mind is not at ease with it.
I doubt anyone could make a reply to this comment that would make me feel any better about it. Indeed, I believe real numbers to be completely natural, but far greater mathematicians than I found them objectionable only a hundred years ago, and demonstrated that mathematics is rich and nuanced even when you assume that they don't exist in the form we think of them today.
> Is this the shadow of something natural that we just couldn't see, or just a convenience?
They originally arose as tool, but complex numbers are fundamental to quantum physics. The wave function is complex, the Schrödinger equation does not make sense without them. They are the best description of reality we have.
One way to sharpen the question is to stop asking whether C is "fundamental" and instead ask whether it is forced by mild structural constraints. From that angle, its status looks closer to inevitability than convenience.
Take R as an ordered field with its usual topology and ask for a finite-dimensional, commutative, unital R-algebra that is algebraically closed and admits a compatible notion of differentiation with reasonable spectral behavior. You essentially land in C, up to isomorphism. This is not an accident, but a consequence of how algebraic closure, local analyticity, and linearization interact. Attempts to remain over R tend to externalize the complexity rather than eliminate it, for example by passing to real Jordan forms, doubling dimensions, or encoding rotations as special cases rather than generic elements.
More telling is the rigidity of holomorphicity. The Cauchy-Riemann equations are not a decorative constraint; they encode the compatibility between the algebra structure and the underlying real geometry. The result is that analyticity becomes a global condition rather than a local one, with consequences like identity theorems and strong maximum principles that have no honest analogue over R.
I’m also skeptical of treating the reals as categorically more natural. R is already a completion, already non-algebraic, already defined via exclusion of infinitesimals. In practice, many constructions over R that are taken to be primitive become functorial or even canonical only after base change to C.
So while one can certainly regard C as a technical device, it behaves like a fixed point: impose enough regularity, closure, and stability requirements, and the theory reconstructs it whether you intend to or not. That does not make it metaphysically fundamental, but it does make it mathematically hard to avoid without paying a real structural cost.
In my view nonnegative numbers have good physical representations: amount, size, distance, position. Even negative integers don't have this types of models for them. Negative numbers arise mostly as a tool for accounting, position on a directed axis, things that cancel out each other (charge). But in each case it is the structure of <R,+> and not <R,+,*> and the positive and negative values are just a convention. Money could be negative, and debt could be positive, everything would be the same. Same for electrons and protons.
So in our everyday reality I think -1 and i exist the same way. I also think that complex numbers are fundamental/central in math, and in our world. They just have so many properties and connections to everything.
I don't know if this will help, but I believe that all of mathematics arises from an underlying fundamental structure to the universe and that this results in it both being "discoverable" (rather than invented) and "useful" (as in helpful for describing, expressing and calculating things).
To be clear, this "disagreement" is about arbitrary naming conventions which can be chosen as needed for the problem at hand. It doesn't make any difference to results.
The author is definitely claiming that it's not just about naming conventions: "These different perspectives ultimately amount, I argue, to mathematically inequivalent structural conceptions of the complex numbers". So you would need to argue against the substance of the article to have a basis for asserting that it is just about naming conventions.
In the article he says there is a model of ZFC in which the complex numbers have indistinguishable square roots of -1. Thus that model presumably does not allow for a rigid coordinate view of complex numbers.
Names, language, and concepts are essential to and have powerful effects on our understanding of anything, and knowledge of mathematics is much more than the results. Arguably, the results are only tests of what's really important, our understanding.
Being an engineer by training, I never got exposed to much algebra in my courses (beyond the usual high school stuff in high school). In fact did not miss it much either. Tried to learn some algebraic geometry then... oh the horror. For whatever reason, my intuition is very geometric and analytic (in the calculus sense). Even things like counting and combinatorics, they feel weird, like dry flavorless pretzels made of dried husk. Combinatorics is good only when I can use Calculus. Calculus, oh that's different, it's rich savoury umami buttery briskets. Yum.
That's not the interesting part. The interesting part is that I thought everyone is the same, like me.
It was a big and surprising revelation that people love counting or algebra in just the same way I feel about geometry (not the finite kind) and feel awkward in the kind of mathematics that I like.
It's part of the reason I don't at all get the hate that school Calculus gets. It's so intuitive and beautifully geometric, what's not to like. .. that's usually my first reaction. Usually followed by disappointment and sadness -- oh no they are contemplating about throwing such a beautiful part away.
School calculus is hated because it's typically taught with epsilon delta proofs which is a formalism that happened later in the history of calculus. It's not that intuitive for beginners, especially students who haven't learn any logic to grok existential/universal quantifiers. Historically, mathematics is usually developed by people with little care for complete rigor, then they erase their tracks to make it look pristine. It's no wonder students are like "who the hell came up with all this". Mathematics definitely has an education problem.
IMO, the calculus is taught incorrectly. It should start with functions and completely avoid sequences initially. Once you understand how calculus exploits continuity (and sometimes smoothness), it becomes almost intuitive. That's also how it was historically developed, until Weierstrass invented his monster function and forced a bit more rigor.
But instead calculus is taught from fundamentals, building up from sequences. And a lot of complexity and hate comes from all those "technical" theorems that you need to make that jump from sequences to functions. E.g. things like "you can pick a converging subsequence from any limited sequence".
We started with functions. Functions as list of pairs, functions defined by algebraic expressions, functions plotted on graph paper and after that limits.
Simultaneously, in Physics classes we were being taught using infinitesimals, with the a call back that "you will see this done more formally in your maths classes, but for intuition, infinitesimals will do for now".
Of course everyone agrees that this is a nice way to construct the complex field. The question is what is the structure you are placing on this construction. Is it just a field? Do you intend to fix R as a distinguished subfield? After all, there are many different copies of R in C, if one has only the field structure. Is i named as a constant, as it seems to be in the construction when you form the polynomials in the symbol i. Do you intend to view this as a topological space? Those further questions is what the discussion is about.
The way I think of complex numbers is as linear transformations. Not points but functions on points that rotate and scale. The complex numbers are a particular set of 2x2 matrices, where complex multiplication is matrix multiplication, i.e. function composition. Complex conjugation is matrix transposition. When you think of things this way all the complex matrices and hermitian matrices in physics make a lot more sense. Which group do I fall into?
Basically C comes up in the chain R \subset C \subset H (quaternions) \subset O (octonions) by the so-called Cayley-Dickson construction. There is a lot of structure.
To the ones objecting to "choosing a value of i" I might argue that no such choice is made. i is the square root of -1 and there is only one value of i. When we write -i that is shorthand for (-1)i. Remember the complex numbers are represented by a+bi where a and b are real numbers and i is the square root of -1. We don't bifurcate i into two distinct numbers because the minus sign is associated with b which is one of the real numbers. There is a one-to-one mapping between the complex numbers and these ordered pairs of reals.
You say that i is "the square root of -1", but which one is it? There are two. This is the point in the essay---we cannot tell the difference between i and -i unless we have already agreed on a choice of which square root of -1 we are going to call i. Only then does the other one become -i. How do we know that my i is the same as your i rather than your -i?
To fix the coordinate structure of the complex numbers (a,b) is in effect to have made a choice of a particular i, and this is one of the perspectives discussed in the essay. But it is not the only perspective, since with that perspective complex conjugation should not count as an automorphism, as it doesn't respect the choice of i.
There are 2 square roots of 9, they are 3 and -3. Likewise there are two square roots of -1 which are i and -i. How are people trying to argue that there are two different things called i? We don't ask which 3 right? My argument is that there is only 1 value of i, and the distinction between -i and i is the same as (-1)i and (1)i, which is the same as -3 vs 3. There is only one i. If there are in fact two i's then there are 4 square roots of -1.
Notably, the real numbers are not symmetrical in this way: there are two square roots of 1, but one of them is equal to it and the other is not. (positive) 1 is special because it's the multiplicative identity, whereas i (and -i) have no distinguishing features: it doesn't matter which one you call i and which one you call -i: if you define j = -i, you'll find that anything you can say about i can also be shown to be true about j. That doesn't mean they're equal, just that they don't have any mathematical properties that let you say which one is which.
Your view of the complex numbers is the rigid one. Now suppose you are given a set with two binary operations defined in such a way that the operations behave well with each other. That is you have a ring. Suppose that by some process you are able to conclude that your ring is algebraically equivalent to the complex numbers. How do you know which of your elements in your ring is “i”? There will be two elements that behave like “i” in all algebraic aspects. So you can’t say that this one is “i” and this one is “-i” in a non arbitrary fashion.
There is no way to distinguish between "i" and "-i" unless you choose a representation of C. That is what Galois Theory is about: can you distinguish the roots of a polynomial in a simple algebraic way?
For instance: if you forget the order in Q (which you can do without it stopping being a field), there is no algebraic (no order-dependent) way to distinguish between the two algebraic solutions of x^2 = 2. You can swap each other and you will not notice anything (again, assuming you "forget" the order structure).
Building off of this point, consider the polynomial x^4 + 2x^2 + 2. Over the rationals Q, this is an irreducible polynomial. There is no way to distinguish the roots from each other. There is also no way to distinguish any pair of roots from any other pair.
But over the reals R, this polynomial is not irreducible. There we find that some pairs of roots have the same real value, and others don't. This leads to the idea of a "complex conjugate pair". And so some pairs of roots of the original polynomial are now different than other pairs.
That notion of a "complex conjugate pair of roots" is therefore not a purely algebraic concept. If you're trying to understand Galois theory, you have to forget about it. Because it will trip up your intuition and mislead you. But in other contexts that is a very meaningful and important idea.
And so we find that we don't just care about what concepts could be understood. We also care about what concepts we're currently choosing to ignore!
There is perfect agreement on the Gaussian integers.
The disagreement is on how much detail of the fine structure we care about. It is roughly analogous to asking whether we should care more about how an ellipse is like a circle, or how they are different. One person might care about the rigid definition and declare them to be different. Another notices that if you look at a circle at an angle, you get an ellipse. And then concludes that they are basically the same thing.
This seems like a silly thing to argue about. And it is.
However in different branches of mathematics, people care about different kinds of mathematical structure. And if you view the complex numbers through the lens of the kind of structure that you pay attention to, then ignore the parts that you aren't paying attention to, your notion of what is "basically the same as the complex numbers" changes. Just like how one of the two people previously viewed an ellipse as basically the same as a circle, because you get one from the other just by looking from an angle.
Note that each mathematician here can see the points that the other mathematicians are making. It is just that some points seem more important to you than others. And that importance is tied to what branch of mathematics you are studying.
The Gaussian integers usually aren't considered interesting enough to have disagreements about. They're in a weird spot because the integer restriction is almost contradictory with considering complex numbers: complex numbers are usually considered as how to express solutions to more types of polynomials, which is the opposite direction of excluding fractions from consideration. They're things that can solve (a restricted subset of) square-roots but not division.
This is really a disagreement about how to construct the complex numbers from more-fundamental objects. And the question is whether those constructions are equivalent. The author argues that two of those constructions are equivalent to each other, but others are not. A big crux of the issue, which is approachable to non-mathematicians, is whether it i and -i are fundamentally different, because arithmetically you can swap i with -i in all your equations and get the same result.
My biggest pet peeve in complex analysis is the concept of multi-value functions.
Functions are defined as relations on two sets such that each element in the first set is in relation to at most one element in the second set. And suddenly we abandon that very definitions without ever changing the notation! Complex logarithms suddenly have infinitely many values! And yet we say complex expressions are equal to something.
Knowledge is the output of a person and their expertise and perspective, irreducibly. In this case, they seem to know something of what they're talking about:
> Starting 2022, I am now the John Cardinal O’Hara Professor of Logic at the University of Notre Dame.
> From 2018 to 2022, I was Professor of Logic at Oxford University and the Sir Peter Strawson Fellow at University College Oxford.
Also interesting:
> I am active on MathOverflow, and my contributions there (see my profile) have earned the top-rated reputation score.
Honestly, the rigid conception is the correct one. Im of the view that i as an attribute on a number rather than a number itself, in the same way a negative sign is an attribute. Its basically exists to generalize rotations through multiplication. Instead of taking an x,y vector and multiplying it by a matrix to get rotations, you can use a complex number representation, and multiply it by another complex number to rotate/scale it. If the cartesian magnitude of the second complex number is 1, then you don't get any scaling. So the idea of x/y coordinates is very much baked in to the "imaginary attribute".
I feel like the problem is that we just assume that e^(pi*i) = -1 as a given, which makes i "feel" like number, which gives some validity to other interpretations. But I would argue that that equation is not actually valid. It arises from Taylor series equivalence between e, sin and cos, but taylor series is simply an approximation of a function by matching its derivatives around a certain point, namely x=0. And just because you take 2 functions and see that their approximations around a certain point are equal, doesn't mean that the functions are equal. Even more so, that definition completely bypasses what it means to taking derivatives into the imaginary plane.
If you try to prove this any other way besides Taylor series expansion, you really cant, because the concept of taking something to the power of "imaginary value" doesn't really have any ties into other definitions.
As such, there is nothing really special about e itself either. The only reason its in there is because of a pattern artifact in math - e^x derivative is itself, while cos and sin follow cyclic patterns. If you were to replace e with any other number, note that anything you ever want to do with complex numbers would work out identically - you don't really use the value of e anywhere, all you really care about is r and theta.
So if you drop the assumption that i is a number and just treat i as an attribute of a number like a negative sign, complex numbers are basically just 2d numbers written in a special way. And of course, the rotations are easily extended into 3d space through quaternions, which use i j an k much in the same way.
> As such, there is nothing really special about e itself either. The only reason its in there is because of a pattern artifact in math - e^x derivative is itself
Not sure I follow you here... The special thing about e is that it's self-derivative. The other exponential bases, while essentially the same in their "growth", have derivatives with an extra factor. I assume you know e is special in that sense, so I'm unclear what you're arguing?
This completely misses the point of why the complex numbers were even invented. i is a number: it is one of the 2 solutions to the equation x^2 = -1 (the other being -i, of course). The whole point of inventing the complex numbers was to have a set of numbers for which any polynomial has a root. And sure, you can call this number (0,1) if you want to, but it's important to remember that C is not the same as R².
Your whole point about Taylor series is also wrong, as Taylor series are not approximations, they are actually equal to the original function if you take their infinite limit for the relevant functions here (e^x, sin x, cos x). So there is no approximation to be talked about, and no problem in identifying these functions with their Taylor series expansions.
I'd also note that there is no need to use Taylor series to prove Euler's formula. Other series that converge to e^x,cos x, sin x can also get you there.
Rotations fell out of the structure of complex numbers. They weren't placed there on purpose. If you want to rotate things there are usually better ways.
The whole idea of imaginary number is its basically an extension of negative numbers in concept.
When you have a negative number, you essentially have scaling + attribute which defines direction. When you encounter two negative attributes and multiply them, you get a positive number, which is a rotation by 180 degrees. Imaginary numbers extend this concept to continuous rotation that is not limited to 180 degrees.
With just i, you get rotations in the x/y plane. When you multiply by 1i you get 90 degree rotation to 1i. Multiply by i again, you get another 90 degree rotation to -1 . And so on. You can do this in xyz with i and j, and you can do this in 4dimentions with i j and k, like quaternions do, using the extra dimension to get rid of gimbal lock computation for vehicle control (where pointed straight up, yaw and roll are identicall)
The fact that i maps to sqrt of -1 is basically just part of this definition - you are using multiplication to express rotations, so when you ask what is the sqrt of -1 you are asking which 2 identical number create a rotation of 180 degrees, and the answer is 1i and 1i.
Note that the definition also very much assumes that you are only using i, i.e analogous to having the x/y plane. If you are working within x y z plane and have i and j, to get to -1 you can rotate through x/y plane or x/z plane. So sqrt of -1 can either mean "sqrt for i" or "sqrt for j" and the answer would be either i or j, both would be valid. So you pretty much have to specify the rotation aspect when you ask for a square root.
Note also that you can you can define i to be <90 degree rotation, like say 60 degrees and everything would still be consistent. In which case cube root of -1 would be i, but square root of -1 would not be i, it would be a complex number with real and imaginary parts.
The thing to understand about math is under the hood, its pretty much objects and operations. A lot of times you will have conflicts where doing an operation on a particular object is undefined - for example there are functions that assymptotically approach zero but are never equal to it. So instead, you have to form other rules or append other systems to existing systems, which all just means you start with a definition. Anything that arises from that definition is not a universal truth of the world, but simply tools that help you deal with the inconsistencies.
Define a tuple (a,b) and define addition as pointwise addition. (a, b) + (c, d) = (a+c, b+d). Apples to apples, oranges to oranges. Fair enough.
How shall I define multiplication, so that multiplication so defined is a group by itself and interacts with the addition defined earlier in a distributive way. Just the way addition and multiplication behave for reals.
Ah! I have to define it this way. OK that's interesting.
But wait, then the algebra works out as if (0, 1) * (0, 1) = (-1, 0) but right hand side is isomorphic to -1. The (x, 0)s behave just like the real number x.
All this writing of tuples is cumbersome, so let me write (0,1) as i.
Addition looks like the all too familiar vector addition. What does this multiplication look like? Let me plot in the coordinate axes.
Ah! It's just scaled rotation, These numbers are just the 2x2 scaled rotation matrices that are parameterized not by 4 real numbers but just by two.
If add two of them I get back another scaled rotation matrix. If I multiply them together I again get back a scaled rotation matrix, neato!
And because there are really only two independent parameters one isomorphic to the reals, let's call the other "imaginary" and the tuples one "complex".
What if I negate the i in a tuple? Oh! it's reflection along the x axis. I got translation, rotation and reflection using these tuples.
What more can I do? I can do polynomials because I can add and multiply. Can I do calculus by falling back to Taylor expansions ? Hmm let me define a metric and see ...
i is not a "trick" or a conceit to shortcut certain calculations like, say, the small angle approximation. i is a number and this must be true because of the fundamental theorem of algebra. Disbelieving in the imaginary numbers is no different from disbelieving in negative numbers.
"Imaginary" is an unfortunate name which gives makes this misunderstanding intuitive.
However, what's true about what you and GP have suggested is that both i and -1 are used as units. Writing -10 or 10i is similar to writing 10kg (more clearly, 10 × i, 10 × -1, 10 × 1kg). Units are not normally numbers, but they are for certain dimensionless quantities like % (1/100) or moles (6.02214076 × 10^23) and i and -1. That is another wrinkle which is genuinely confusing.
We could've called the imaginaries "orthogonals", "perpendiculars", "complications", "atypicals", there's a million other options. I like the idea that a number is complex because it has a "complicated component".
I have a Ph.D. in a field of mathematics in which complex numbers are fundamental, but I have a real philosophical problem with complex numbers. In particular, they arose historically as a tool for solving polynomial equations. Is this the shadow of something natural that we just couldn't see, or just a convenience?
As the "evidence" piles up, in further mathematics, physics, and the interactions of the two, I still never got to the point at the core where I thought complex numbers were a certain fundamental concept, or just a convenient tool for expressing and calculating a variety of things. It's more than just a coincidence, for sure, but the philosophical part of my mind is not at ease with it.
I doubt anyone could make a reply to this comment that would make me feel any better about it. Indeed, I believe real numbers to be completely natural, but far greater mathematicians than I found them objectionable only a hundred years ago, and demonstrated that mathematics is rich and nuanced even when you assume that they don't exist in the form we think of them today.
> Is this the shadow of something natural that we just couldn't see, or just a convenience?
They originally arose as tool, but complex numbers are fundamental to quantum physics. The wave function is complex, the Schrödinger equation does not make sense without them. They are the best description of reality we have.
One way to sharpen the question is to stop asking whether C is "fundamental" and instead ask whether it is forced by mild structural constraints. From that angle, its status looks closer to inevitability than convenience.
Take R as an ordered field with its usual topology and ask for a finite-dimensional, commutative, unital R-algebra that is algebraically closed and admits a compatible notion of differentiation with reasonable spectral behavior. You essentially land in C, up to isomorphism. This is not an accident, but a consequence of how algebraic closure, local analyticity, and linearization interact. Attempts to remain over R tend to externalize the complexity rather than eliminate it, for example by passing to real Jordan forms, doubling dimensions, or encoding rotations as special cases rather than generic elements.
More telling is the rigidity of holomorphicity. The Cauchy-Riemann equations are not a decorative constraint; they encode the compatibility between the algebra structure and the underlying real geometry. The result is that analyticity becomes a global condition rather than a local one, with consequences like identity theorems and strong maximum principles that have no honest analogue over R.
I’m also skeptical of treating the reals as categorically more natural. R is already a completion, already non-algebraic, already defined via exclusion of infinitesimals. In practice, many constructions over R that are taken to be primitive become functorial or even canonical only after base change to C.
So while one can certainly regard C as a technical device, it behaves like a fixed point: impose enough regularity, closure, and stability requirements, and the theory reconstructs it whether you intend to or not. That does not make it metaphysically fundamental, but it does make it mathematically hard to avoid without paying a real structural cost.
I'm presuming this is old news to you, but what helped me get comfortable with ℂ was learning that it's just the algebraic closure of ℝ.
In my view nonnegative numbers have good physical representations: amount, size, distance, position. Even negative integers don't have this types of models for them. Negative numbers arise mostly as a tool for accounting, position on a directed axis, things that cancel out each other (charge). But in each case it is the structure of <R,+> and not <R,+,*> and the positive and negative values are just a convention. Money could be negative, and debt could be positive, everything would be the same. Same for electrons and protons.
So in our everyday reality I think -1 and i exist the same way. I also think that complex numbers are fundamental/central in math, and in our world. They just have so many properties and connections to everything.
I don't know if this will help, but I believe that all of mathematics arises from an underlying fundamental structure to the universe and that this results in it both being "discoverable" (rather than invented) and "useful" (as in helpful for describing, expressing and calculating things).
First comes the math, then comes the discoveries.
Complex numbers allow us to explore into the future.
Math allows us to prove to ourselves the feasibility of ideas.
We've seen this happen before with special relativity.
To be clear, this "disagreement" is about arbitrary naming conventions which can be chosen as needed for the problem at hand. It doesn't make any difference to results.
The author is definitely claiming that it's not just about naming conventions: "These different perspectives ultimately amount, I argue, to mathematically inequivalent structural conceptions of the complex numbers". So you would need to argue against the substance of the article to have a basis for asserting that it is just about naming conventions.
In the article he says there is a model of ZFC in which the complex numbers have indistinguishable square roots of -1. Thus that model presumably does not allow for a rigid coordinate view of complex numbers.
I'm not a professional, but to me it's clear that whether i and -i are "the same" or "different" is actually quite important.
They would never be the same. It's just that everything still works the same if you switch out every i with -i (and thus every -i with i).
A bit like +0 and -0? It makes sense in some contexts, and none in others.
Agreed. To me it looks like the entire discussion is just bike-shedding.
Names, language, and concepts are essential to and have powerful effects on our understanding of anything, and knowledge of mathematics is much more than the results. Arguably, the results are only tests of what's really important, our understanding.
The whole substack is great, I recommend reading all of it if you are interested in infinity
He's also very active at Stack Exchange
– https://stackexchange.com/users/510234/joel-david-hamkins
– https://mathoverflow.net/users/1946/joel-david-hamkins
There's no disagreement, the algebraic one is the correct one, obviously. Anyone that says differently is wrong. :)
Being an engineer by training, I never got exposed to much algebra in my courses (beyond the usual high school stuff in high school). In fact did not miss it much either. Tried to learn some algebraic geometry then... oh the horror. For whatever reason, my intuition is very geometric and analytic (in the calculus sense). Even things like counting and combinatorics, they feel weird, like dry flavorless pretzels made of dried husk. Combinatorics is good only when I can use Calculus. Calculus, oh that's different, it's rich savoury umami buttery briskets. Yum.
That's not the interesting part. The interesting part is that I thought everyone is the same, like me.
It was a big and surprising revelation that people love counting or algebra in just the same way I feel about geometry (not the finite kind) and feel awkward in the kind of mathematics that I like.
It's part of the reason I don't at all get the hate that school Calculus gets. It's so intuitive and beautifully geometric, what's not to like. .. that's usually my first reaction. Usually followed by disappointment and sadness -- oh no they are contemplating about throwing such a beautiful part away.
School calculus is hated because it's typically taught with epsilon delta proofs which is a formalism that happened later in the history of calculus. It's not that intuitive for beginners, especially students who haven't learn any logic to grok existential/universal quantifiers. Historically, mathematics is usually developed by people with little care for complete rigor, then they erase their tracks to make it look pristine. It's no wonder students are like "who the hell came up with all this". Mathematics definitely has an education problem.
You can do it with infinitesimals if you like, but the required course in nonstandard analysis to justify it is a bastard.
IMO, the calculus is taught incorrectly. It should start with functions and completely avoid sequences initially. Once you understand how calculus exploits continuity (and sometimes smoothness), it becomes almost intuitive. That's also how it was historically developed, until Weierstrass invented his monster function and forced a bit more rigor.
But instead calculus is taught from fundamentals, building up from sequences. And a lot of complexity and hate comes from all those "technical" theorems that you need to make that jump from sequences to functions. E.g. things like "you can pick a converging subsequence from any limited sequence".
Interesting.
We started with functions. Functions as list of pairs, functions defined by algebraic expressions, functions plotted on graph paper and after that limits.
Simultaneously, in Physics classes we were being taught using infinitesimals, with the a call back that "you will see this done more formally in your maths classes, but for intuition, infinitesimals will do for now".
"The Axiom of Choice is obviously true, the Well-ordering theorem obviously false, and who can tell about Zorn's lemma?"
(attributed to Jerry Bona)
The complex numbers are just elements of R[i]/(i^2+1). I don't even understand how people are able to get this wrong.
Of course everyone agrees that this is a nice way to construct the complex field. The question is what is the structure you are placing on this construction. Is it just a field? Do you intend to fix R as a distinguished subfield? After all, there are many different copies of R in C, if one has only the field structure. Is i named as a constant, as it seems to be in the construction when you form the polynomials in the symbol i. Do you intend to view this as a topological space? Those further questions is what the discussion is about.
Hah. This perspective is how you get an embedding of booleans into the reals in which False is 1 and True is -1 :-)
(Yes, mathematicians really use it. It makes parity a simpler polynomial than the normal assignment).
Obviously.
The way I think of complex numbers is as linear transformations. Not points but functions on points that rotate and scale. The complex numbers are a particular set of 2x2 matrices, where complex multiplication is matrix multiplication, i.e. function composition. Complex conjugation is matrix transposition. When you think of things this way all the complex matrices and hermitian matrices in physics make a lot more sense. Which group do I fall into?
This would be the rigid interpretation since i and -i are concrete distinguishable elements with Im and Re defined.
The link is about set theory, but others may find this interesting which discusses division algebras https://nigelvr.github.io/post-4.html
Basically C comes up in the chain R \subset C \subset H (quaternions) \subset O (octonions) by the so-called Cayley-Dickson construction. There is a lot of structure.
To the ones objecting to "choosing a value of i" I might argue that no such choice is made. i is the square root of -1 and there is only one value of i. When we write -i that is shorthand for (-1)i. Remember the complex numbers are represented by a+bi where a and b are real numbers and i is the square root of -1. We don't bifurcate i into two distinct numbers because the minus sign is associated with b which is one of the real numbers. There is a one-to-one mapping between the complex numbers and these ordered pairs of reals.
You say that i is "the square root of -1", but which one is it? There are two. This is the point in the essay---we cannot tell the difference between i and -i unless we have already agreed on a choice of which square root of -1 we are going to call i. Only then does the other one become -i. How do we know that my i is the same as your i rather than your -i?
To fix the coordinate structure of the complex numbers (a,b) is in effect to have made a choice of a particular i, and this is one of the perspectives discussed in the essay. But it is not the only perspective, since with that perspective complex conjugation should not count as an automorphism, as it doesn't respect the choice of i.
There are 2 square roots of 9, they are 3 and -3. Likewise there are two square roots of -1 which are i and -i. How are people trying to argue that there are two different things called i? We don't ask which 3 right? My argument is that there is only 1 value of i, and the distinction between -i and i is the same as (-1)i and (1)i, which is the same as -3 vs 3. There is only one i. If there are in fact two i's then there are 4 square roots of -1.
Notably, the real numbers are not symmetrical in this way: there are two square roots of 1, but one of them is equal to it and the other is not. (positive) 1 is special because it's the multiplicative identity, whereas i (and -i) have no distinguishing features: it doesn't matter which one you call i and which one you call -i: if you define j = -i, you'll find that anything you can say about i can also be shown to be true about j. That doesn't mean they're equal, just that they don't have any mathematical properties that let you say which one is which.
Your view of the complex numbers is the rigid one. Now suppose you are given a set with two binary operations defined in such a way that the operations behave well with each other. That is you have a ring. Suppose that by some process you are able to conclude that your ring is algebraically equivalent to the complex numbers. How do you know which of your elements in your ring is “i”? There will be two elements that behave like “i” in all algebraic aspects. So you can’t say that this one is “i” and this one is “-i” in a non arbitrary fashion.
There is no way to distinguish between "i" and "-i" unless you choose a representation of C. That is what Galois Theory is about: can you distinguish the roots of a polynomial in a simple algebraic way?
For instance: if you forget the order in Q (which you can do without it stopping being a field), there is no algebraic (no order-dependent) way to distinguish between the two algebraic solutions of x^2 = 2. You can swap each other and you will not notice anything (again, assuming you "forget" the order structure).
Building off of this point, consider the polynomial x^4 + 2x^2 + 2. Over the rationals Q, this is an irreducible polynomial. There is no way to distinguish the roots from each other. There is also no way to distinguish any pair of roots from any other pair.
But over the reals R, this polynomial is not irreducible. There we find that some pairs of roots have the same real value, and others don't. This leads to the idea of a "complex conjugate pair". And so some pairs of roots of the original polynomial are now different than other pairs.
That notion of a "complex conjugate pair of roots" is therefore not a purely algebraic concept. If you're trying to understand Galois theory, you have to forget about it. Because it will trip up your intuition and mislead you. But in other contexts that is a very meaningful and important idea.
And so we find that we don't just care about what concepts could be understood. We also care about what concepts we're currently choosing to ignore!
Exactly.
That is why the "forgetful functor" seems at first sight stupid and when you think a bit, it is genius.
Notably, neither `1 + i > 1 - i` or `1 + i < 1 - i` are correct statements, and obviously `1 + i = 1 - i` is absurd.
What do > and < mean in the context of an infinite 2D plane?
Typically, the order of complex numbers is done by projecting C onto R, i.e. by taking the absolute value.
Yes I’m aware. It’s a work around but doesn’t give you a sensible ordering the way most people expect, i.e:
-2 > 1 (in C)
Which is why I prefer to leave <,> undefined in C and just take the magnitude if I want to compare complex numbers.
One is above the plane and the other is below it. ;)
Is there agreement Gaussian integers?
This disagreement seems above the head of non mathematicians, including those (like me) with familiarity with complex numbers
There is perfect agreement on the Gaussian integers.
The disagreement is on how much detail of the fine structure we care about. It is roughly analogous to asking whether we should care more about how an ellipse is like a circle, or how they are different. One person might care about the rigid definition and declare them to be different. Another notices that if you look at a circle at an angle, you get an ellipse. And then concludes that they are basically the same thing.
This seems like a silly thing to argue about. And it is.
However in different branches of mathematics, people care about different kinds of mathematical structure. And if you view the complex numbers through the lens of the kind of structure that you pay attention to, then ignore the parts that you aren't paying attention to, your notion of what is "basically the same as the complex numbers" changes. Just like how one of the two people previously viewed an ellipse as basically the same as a circle, because you get one from the other just by looking from an angle.
Note that each mathematician here can see the points that the other mathematicians are making. It is just that some points seem more important to you than others. And that importance is tied to what branch of mathematics you are studying.
The Gaussian integers usually aren't considered interesting enough to have disagreements about. They're in a weird spot because the integer restriction is almost contradictory with considering complex numbers: complex numbers are usually considered as how to express solutions to more types of polynomials, which is the opposite direction of excluding fractions from consideration. They're things that can solve (a restricted subset of) square-roots but not division.
This is really a disagreement about how to construct the complex numbers from more-fundamental objects. And the question is whether those constructions are equivalent. The author argues that two of those constructions are equivalent to each other, but others are not. A big crux of the issue, which is approachable to non-mathematicians, is whether it i and -i are fundamentally different, because arithmetically you can swap i with -i in all your equations and get the same result.
My biggest pet peeve in complex analysis is the concept of multi-value functions.
Functions are defined as relations on two sets such that each element in the first set is in relation to at most one element in the second set. And suddenly we abandon that very definitions without ever changing the notation! Complex logarithms suddenly have infinitely many values! And yet we say complex expressions are equal to something.
Madness.
Knowledge is the output of a person and their expertise and perspective, irreducibly. In this case, they seem to know something of what they're talking about:
> Starting 2022, I am now the John Cardinal O’Hara Professor of Logic at the University of Notre Dame.
> From 2018 to 2022, I was Professor of Logic at Oxford University and the Sir Peter Strawson Fellow at University College Oxford.
Also interesting:
> I am active on MathOverflow, and my contributions there (see my profile) have earned the top-rated reputation score.
https://jdh.hamkins.org/about/
Honestly, the rigid conception is the correct one. Im of the view that i as an attribute on a number rather than a number itself, in the same way a negative sign is an attribute. Its basically exists to generalize rotations through multiplication. Instead of taking an x,y vector and multiplying it by a matrix to get rotations, you can use a complex number representation, and multiply it by another complex number to rotate/scale it. If the cartesian magnitude of the second complex number is 1, then you don't get any scaling. So the idea of x/y coordinates is very much baked in to the "imaginary attribute".
I feel like the problem is that we just assume that e^(pi*i) = -1 as a given, which makes i "feel" like number, which gives some validity to other interpretations. But I would argue that that equation is not actually valid. It arises from Taylor series equivalence between e, sin and cos, but taylor series is simply an approximation of a function by matching its derivatives around a certain point, namely x=0. And just because you take 2 functions and see that their approximations around a certain point are equal, doesn't mean that the functions are equal. Even more so, that definition completely bypasses what it means to taking derivatives into the imaginary plane.
If you try to prove this any other way besides Taylor series expansion, you really cant, because the concept of taking something to the power of "imaginary value" doesn't really have any ties into other definitions.
As such, there is nothing really special about e itself either. The only reason its in there is because of a pattern artifact in math - e^x derivative is itself, while cos and sin follow cyclic patterns. If you were to replace e with any other number, note that anything you ever want to do with complex numbers would work out identically - you don't really use the value of e anywhere, all you really care about is r and theta.
So if you drop the assumption that i is a number and just treat i as an attribute of a number like a negative sign, complex numbers are basically just 2d numbers written in a special way. And of course, the rotations are easily extended into 3d space through quaternions, which use i j an k much in the same way.
> As such, there is nothing really special about e itself either. The only reason its in there is because of a pattern artifact in math - e^x derivative is itself
Not sure I follow you here... The special thing about e is that it's self-derivative. The other exponential bases, while essentially the same in their "growth", have derivatives with an extra factor. I assume you know e is special in that sense, so I'm unclear what you're arguing?
This completely misses the point of why the complex numbers were even invented. i is a number: it is one of the 2 solutions to the equation x^2 = -1 (the other being -i, of course). The whole point of inventing the complex numbers was to have a set of numbers for which any polynomial has a root. And sure, you can call this number (0,1) if you want to, but it's important to remember that C is not the same as R².
Your whole point about Taylor series is also wrong, as Taylor series are not approximations, they are actually equal to the original function if you take their infinite limit for the relevant functions here (e^x, sin x, cos x). So there is no approximation to be talked about, and no problem in identifying these functions with their Taylor series expansions.
I'd also note that there is no need to use Taylor series to prove Euler's formula. Other series that converge to e^x,cos x, sin x can also get you there.
Rotations fell out of the structure of complex numbers. They weren't placed there on purpose. If you want to rotate things there are usually better ways.
No.
The whole idea of imaginary number is its basically an extension of negative numbers in concept. When you have a negative number, you essentially have scaling + attribute which defines direction. When you encounter two negative attributes and multiply them, you get a positive number, which is a rotation by 180 degrees. Imaginary numbers extend this concept to continuous rotation that is not limited to 180 degrees.
With just i, you get rotations in the x/y plane. When you multiply by 1i you get 90 degree rotation to 1i. Multiply by i again, you get another 90 degree rotation to -1 . And so on. You can do this in xyz with i and j, and you can do this in 4dimentions with i j and k, like quaternions do, using the extra dimension to get rid of gimbal lock computation for vehicle control (where pointed straight up, yaw and roll are identicall)
The fact that i maps to sqrt of -1 is basically just part of this definition - you are using multiplication to express rotations, so when you ask what is the sqrt of -1 you are asking which 2 identical number create a rotation of 180 degrees, and the answer is 1i and 1i.
Note that the definition also very much assumes that you are only using i, i.e analogous to having the x/y plane. If you are working within x y z plane and have i and j, to get to -1 you can rotate through x/y plane or x/z plane. So sqrt of -1 can either mean "sqrt for i" or "sqrt for j" and the answer would be either i or j, both would be valid. So you pretty much have to specify the rotation aspect when you ask for a square root.
Note also that you can you can define i to be <90 degree rotation, like say 60 degrees and everything would still be consistent. In which case cube root of -1 would be i, but square root of -1 would not be i, it would be a complex number with real and imaginary parts.
The thing to understand about math is under the hood, its pretty much objects and operations. A lot of times you will have conflicts where doing an operation on a particular object is undefined - for example there are functions that assymptotically approach zero but are never equal to it. So instead, you have to form other rules or append other systems to existing systems, which all just means you start with a definition. Anything that arises from that definition is not a universal truth of the world, but simply tools that help you deal with the inconsistencies.
Nope. (Just to imitate your style).
More pedagogically ...
Define a tuple (a,b) and define addition as pointwise addition. (a, b) + (c, d) = (a+c, b+d). Apples to apples, oranges to oranges. Fair enough.
How shall I define multiplication, so that multiplication so defined is a group by itself and interacts with the addition defined earlier in a distributive way. Just the way addition and multiplication behave for reals.
Ah! I have to define it this way. OK that's interesting.
But wait, then the algebra works out as if (0, 1) * (0, 1) = (-1, 0) but right hand side is isomorphic to -1. The (x, 0)s behave just like the real number x.
All this writing of tuples is cumbersome, so let me write (0,1) as i.
Addition looks like the all too familiar vector addition. What does this multiplication look like? Let me plot in the coordinate axes.
Ah! It's just scaled rotation, These numbers are just the 2x2 scaled rotation matrices that are parameterized not by 4 real numbers but just by two.
If add two of them I get back another scaled rotation matrix. If I multiply them together I again get back a scaled rotation matrix, neato!
And because there are really only two independent parameters one isomorphic to the reals, let's call the other "imaginary" and the tuples one "complex".
What if I negate the i in a tuple? Oh! it's reflection along the x axis. I got translation, rotation and reflection using these tuples.
What more can I do? I can do polynomials because I can add and multiply. Can I do calculus by falling back to Taylor expansions ? Hmm let me define a metric and see ...
Yeah i is not a number. Once you define complex numbers from reals and i, i becomes a complex numbers but that's a trick
i is not a "trick" or a conceit to shortcut certain calculations like, say, the small angle approximation. i is a number and this must be true because of the fundamental theorem of algebra. Disbelieving in the imaginary numbers is no different from disbelieving in negative numbers.
"Imaginary" is an unfortunate name which gives makes this misunderstanding intuitive.
https://youtube.com/playlist?list=PLiaHhY2iBX9g6KIvZ_703G3KJ...
However, what's true about what you and GP have suggested is that both i and -1 are used as units. Writing -10 or 10i is similar to writing 10kg (more clearly, 10 × i, 10 × -1, 10 × 1kg). Units are not normally numbers, but they are for certain dimensionless quantities like % (1/100) or moles (6.02214076 × 10^23) and i and -1. That is another wrinkle which is genuinely confusing.
https://en.wikipedia.org/wiki/Dimensionless_quantity
If you take this tack, then 0 and 1 are not numbers either.
Whoever coined the terms ‘complex numbers’ with a ‘real part’ and ‘imaginary part’ really screwed a lot of people..
How come? They are part real numbers, what would you call the other part?
We could've called the imaginaries "orthogonals", "perpendiculars", "complications", "atypicals", there's a million other options. I like the idea that a number is complex because it has a "complicated component".
Another "xyz" domain that doesn't resolve on my network.
Yep- there’s some issues representing complex numbers in 3D space. You may want to check out quaternions.
Instructions unclear, gimbal locked
https://web.archive.org/web/20251015174117/https://www.infin...
This one has the paywall, but the main site has no paywall currently.